资源类型

期刊论文 18

年份

2023 3

2022 1

2021 2

2020 2

2018 1

2017 3

2014 1

2013 1

2009 1

2007 1

展开 ︾

关键词

展开 ︾

检索范围:

排序: 展示方式:

Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)

Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 238-251 doi: 10.1007/s11705-017-1627-1

摘要: A microsphere biosorbent with uniform size (CV= 1.52%), controllable morphology and component, and high mechanical strength was synthesized from chitosan by microfluidic technology combining with chemical crosslinking and solvent extraction. This chitosan microsphere (CS-MS) was prepared with a two-step solidification process, which was acquired by drying for the enhancement of mechanical property in final. The adsorption behavior of CS-MS towards copper (II) and main influencing factors on adsorption performance were investigated by batch experiments. Kinetic data highlighted dominant chemical bonding along with electrons transferring in adsorption process. Isothermal analysis indicated that adsorption capacity was relevant to the number of active site. All these explorations provided a new direction for preparing highly comprehensive performance sorbent used in heavy metal treatment via microfluidic technology.

关键词: chitosan microsphere     microfluidic technology     adsorption     copper (II)    

Preparation and application of magnetic microsphere carriers

ZHANG Bo, XING Jianmin, LIU Huizhou

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 96-101 doi: 10.1007/s11705-007-0019-3

摘要: Magnetic microsphere carriers have received considerable attention, primarily because of their wide applications in the fields of biomedicine and bioengineering. In this paper, preparation methods, surface modification and application of magnetic carriers are reviewed. Emphasis will be placed on recent biological and biomedical developments and trends such as enzyme immobilization, cell isolation, protein purification, target drugs and DNA separation.

关键词: microsphere     biomedicine     DNA     purification     preparation    

Removal of copper by modified chitosan adsorptive membrane

Xiaoshuai LIU, Zihong CHENG, Wei MA

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 102-106 doi: 10.1007/s11705-009-0123-7

摘要: In this study, a novel adsorptive membrane was prepared from chitosan as the functional polymer and some additive blend solutions by solution casting method. The modified chitosan membrane was characterized by FTIR and its Water Swelling Ratio (WSR). The adsorption of copper ions on the adsorptive membrane was investigated in batch experiments. The results obtained from the experiments indicated that the membrane had a good adsorption capacity for copper ions, the optimal ionic strength and pH were 0.1 and 5-6, respectively. Compared with the Langmuir isotherm model, the experimental data were found to be following the Freundlich model.

关键词: chitosan     adsorptive membrane     copper removal     environmental engineering     heavy metal     isotherm model    

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 853-866 doi: 10.1007/s11705-022-2256-x

摘要: The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg∙g‒1 is achieved under the conditions of 20 mg∙L‒1 adsorbents, 100 mg∙L‒1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption–alkaline desorption experiments.

关键词: chitosan foam     cellulose nanocrystals     acid red 134     adsorption    

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1704-2

Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads

Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 675-682 doi: 10.1007/s11783-013-0622-0

摘要: Polyethylenimine (PEI)-modified chitosan was prepared and used to remove clofibric acid (CA) from aqueous solution. PEI was chemically grafted on the porous chitosan through a crosslinking reaction, and the effects of PEI concentration and reaction time in the preparation on the adsorption of clofibric acid were optimized. Scanning electron microscopy (SEM) showed that PEI macromolecules were uniformly grafted on the porous chitosan, and the analysis of pore size distribution indicated that more mesopores were formed due to the crosslinking of PEI molecules in the macropores of chitosan. The PEI-modified chitosan had fast adsorption for CA within the initial 5 h, while this adsorbent exhibited an adsorption capacity of 349 mg·g for CA at pH 5.0 according to the Langmuir fitting, higher than 213 mg·g on the porous chitosan. The CA adsorption on the PEI-modified chitosan was pH-dependent, and the maximum adsorption was achieved at pH 4.0. Based on the surface charge analysis and comparison of different pharmaceuticals adsorption, electrostatic interaction dominated the sorption of CA on the PEI-modified chitosan. The PEI-modified chitosan has a potential application for the removal of some anionic micropollutants from water or wastewater.

关键词: clofibric acid     PEI-modified chitosan     adsorption capacity     adsorption mechanism     electrostatic interaction    

An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water

Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1355-5

摘要: Abstract • Underwater superoleophobic membrane was fabricated by deposition of catechol/chitosan. • The membrane had ultrahigh pure water flux and was stable under harsh pH conditions. • The membrane exhibited remarkable antifouling property in O/W emulsion separation. • The hydration layer on the membrane surface prevented oil droplets adhesion. Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation. However, conventional membranes usually suffer from severe pore clogging and surface fouling, and thus, novel membranes with superior wettability and antifouling features are urgently required. Herein, we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride (PVDF) substrate. Membrane morphology and surface chemistry were studied using a series of characterization techniques. The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating. It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions. Moreover, the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface, which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water (O/W) emulsion separation. The modified membrane exhibited a competitive flux of ~428 L/(m2·h·bar) after three filtration cycles, which was 70% higher than that of the pristine PVDF membrane. These results suggest that the novel underwater superoleophobic membrane can potentially be used for sustainable O/W emulsions separation, and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity.

关键词: Antifouling     Catechol/chitosan co-deposition     Oil-in-water emulsions separation     Underwater superoleophobic    

Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1416-4

摘要:

• Solvent-free chitosan oxidation is obtained by rapid mechanochemical reaction.

关键词: Chitosan     High energy ball milling     Mechanochemistry     Oxidation    

Anthocyanins/chitosan films doped by nano zinc oxide for active and intelligent packaging: comparison

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 704-715 doi: 10.1007/s11705-022-2270-z

摘要: The multifunctional films was prepared by blending chitosan and nano-ZnO with purple tomato anthocyanins or black wolfberry anthocyanins. The properties of films functioned by anthocyanins source and nano-ZnO content were studied. It was found purple tomato anthocyanins showed more significant color change against pH than black wolfberry anthocyanins. The nano-ZnO were widely dispersed in matrix and enhanced the compatibility of anthocyanins with chitosan. However, the anthocyanins source influenced the properties of the films more slightly than nano-ZnO addition. The tensile strength, antioxidant and antibacterial effects of the chitosan films dramatically increased after cooperated by nano-ZnO and anthocyanins, which also enhanced with increase of nano-ZnO content, whereas the elongation at break of the composite films decreased. Especially, the anthocyanin and nano-ZnO promoted the antibacterial activity of films synergistically. Composite films made from black wolfberry anthocyanins exhibited higher mechanical performance than those made from purple tomato anthocyanins but weaker antibacterial effects. The purple tomato anthocyanins/chitosan and nano-ZnO/purple tomato anthocyanins/chitosan films effectively reflected pork spoilage, changing their colors from dark green to brown, indicating the potential for applications in active and intelligent food packaging.

关键词: bio-based     multifunction     colorimetric indicator     active and intelligent packaging    

Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(

Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO

《化学科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 388-400 doi: 10.1007/s11705-013-1355-0

摘要: With the excellent biocompatibility and osteoconductivity, nano-hydroxyapatite (nHA) has shown significant prospect in the biomedical applications. Controlling the size, crystallinity and surface properties of nHA crystals is a critical challenge in the design of HA based biomaterials. With the graft copolymer of chitosan and poly( -isopropylacrylamide) in coil and globule states as a template respectively, a novel composite from chitosan-g-poly( -isopropylacrylamide) and nano-hydroxyapatite (CS-g-PNIPAM/nHA) was prepared via co-precipitation. Zeta potential analysis, thermogravimetric analysis and X-ray diffraction were used to identify the formation mechanism of the CS-g-PNIPAM/nHA composite and its morphology was observed by transmission electron microscopy. The results suggested that the physical aggregation states of the template polymer could induce or control the size, crystallinity and morphology of HA crystals in the CS-g-PNIPAM/nHA composite. The CS-g-PNIPAM/nHA composite was then introduced to chitosan-gelatin (CS-Gel) polyelectronic complex and the cytocompatibility of the resulting CS-Gel/composite hybrid film was evaluated. This hybrid film was proved to be favorable for the proliferation of MC 3T3-E1 cells. Therefore, the CS-g-PNIPAM/nHA composite is a potential biomaterial in bone tissue engineering.

关键词: chitosan     poly(N-isopropylacrylamide)     hydroxyapatite     coil     globule     bone tissue engineering    

Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption

Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 575-585 doi: 10.1007/s11705-017-1650-2

摘要: Novel modified activated carbons (ACs) with enhanced adsorptive properties were obtained coating by chitosan (CS), polyethylene glycol (PEG) and blends of the two polymers (0:1, 1:0, 1:1, 1:2 and 2:1 wt/wt) on ACs by an impregnation technique. The adsorption performances of the pristine, acidified and polymer-impregnated ACs were studied using methylene blue as a model adsorbate. The adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and abrasion hardness tests. The average coating thicknesses were between 10 to 23 microns. The pore sizes, pore densities and pore capacities of the activated carbons increased as the wt-% PEG in the coating increased. The highest adsorption capacity (424.7 mg/g) was obtained for the chitosan-coated ACs and this adsorption was well described by the Langmuir isotherm model. The kinetic results were best described by the pseudo-second-order kinetic model. The highest rate constant was obtained with the ACs modified with the CS:PEG (2:1) coating and this result was almost 2.6 times greater than that of the unmodified ACs. The CS/PEG impregnated ACs also displayed superior hardness (~90%), compared to unmodified ACs (~85%). Overall the chitosan had a greater effect on improving adsorption capacity whereas the polyethylene glycol enhanced the adsorption rate.

关键词: carbon biocomposites     impregnation     chitosan     polyethylene glycol     image processing    

Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan

Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 408-419 doi: 10.1007/s11705-021-2054-x

摘要: Composite materials have elicited much interest because of their superior performance in the removal of toxic and radioactive uranyl ions from aqueous solutions. With polyethyleneimine as a functional group, carboxylated chitosan as a matrix, and oxidizing activated carbon as a nanofiller, this study synthesized a novel environment-friendly polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal (PCO) biocomposite with a unique three-dimensional porous structure. PCO was synthesized through an easy chemical cross-linking method. Detailed characterization certified the formation of the unique three-dimensional porous structure. The obtained PCO was used to remove uranyl ions from an aqueous solution, demonstrating the maximum adsorption capacity of 450 mg·g . The adsorption capacity of PCO decreased by less than 7.51% after five adsorption-desorption cycles. PCO exhibited good adsorption selectivity ( = 3.45 × 10 mL·g ) for uranyl ions. The adsorption mechanism of PCO was also discussed. The material showed good potential for application in the treatment of wastewater containing uranyl ions.

关键词: polyethylenimine     carboxylated chitosan     activated charcoal     uranyl ion     adsorption    

Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from

Xuewen Hu, Yun Wang, Jinbo Ou Yang,Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1029-1038 doi: 10.1007/s11705-019-1898-9

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

《化学科学与工程前沿(英文)》   页码 1659-1671 doi: 10.1007/s11705-022-2173-z

摘要: For decades, distiller waste and CO2 were not the first choice for production of high valued products. Here, CaCO3 hollow microspheres, a high-value product was synthesized from such a reaction system. The synthetic methods, the formation mechanism and operational cost were discussed. When 2.5 L·min–1·L–1 CO2 was flowed into distiller waste (pH = 11.4), spheres with 4–13 μm diameters and about 2 μm shell thickness were obtained. It is found that there is a transformation of CaCO3 particles from solid-cubic nuclei to hollow spheres. Firstly, the Ca(OH)2 in the distiller waste stimulated the nucleation of calcite with a non-template effect and further maintained the calcite form and prevented the formation of vaterite. Therefore, in absence of auxiliaries, the formation of hollow structures mainly depended on the growth and aging of CaCO3. Studies on the crystal morphology and its changes during the growth process point to the inside–out Ostwald effect in the formation of hollow spheres. Change in chemical properties of the bulk solution caused changes in interfacial tension and interfacial energy, which promoted the morphological transformation of CaCO3 particles from cubic calcite to spherical clusters. Finally, the flow process for absorption of CO2 by distiller waste was designed and found profitable.

关键词: distiller waste     CO2     hollow microsphere     CaCO3     Ca(OH)2     inside−out Ostwald effect    

Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore structure and supercapacitive performance

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1072-1086 doi: 10.1007/s11705-019-1899-8

摘要: In this study, polybenzoxazine (PBZ)-based carbon microspheres were prepared via a facile method using a mixture of formaldehyde (F) and dimethylformamide (DMF) as the solvent. The PBZ microspheres were successfully obtained at the F/DMF weight ratios of 0.4 and 0.6. These microspheres exhibited high nitrogen contents after carbonization. The microstructures of all the samples showed an amorphous phase and a partial graphitic phase. The porous carbon with the F/DMF ratio of 0.4 showed significantly higher specific capacitance (275.1 F g ) than the reference carbon (198.9 F g ) at 0.05 A g . This can be attributed to the synergistic electrical double-layer capacitor and pseudo-capacitor behaviors of the porous carbon with the F/DMF ratio of 0.4. The presence of nitrogen/oxygen functionalities induced pseudo-capacitance in the microspheres, and hence increased their total specific capacitance. After activation with CO , the specific surface area of the carbon microspheres with the F/DMF ratio of 0.4 increased from 349 to 859 m g and the specific capacitance increased to 424.7 F g . This value is approximately two times higher than that of the reference carbon. The results indicated that the F/DMF ratio of 0.4 was suitable for preparing carbon microspheres with good supercapacitive performance. The nitrogen/oxygen functionalities and high specific surface area of the microspheres were responsible for their high capacitance.

关键词: PBZ     carbon     porous materials     microsphere     supercapacitor    

标题 作者 时间 类型 操作

Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)

Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo

期刊论文

Preparation and application of magnetic microsphere carriers

ZHANG Bo, XING Jianmin, LIU Huizhou

期刊论文

Removal of copper by modified chitosan adsorptive membrane

Xiaoshuai LIU, Zihong CHENG, Wei MA

期刊论文

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal

期刊论文

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled

期刊论文

Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads

Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU

期刊论文

An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water

Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng

期刊论文

Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan

期刊论文

Anthocyanins/chitosan films doped by nano zinc oxide for active and intelligent packaging: comparison

期刊论文

Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(

Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO

期刊论文

Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption

Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour

期刊论文

Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan

Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen

期刊论文

Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from

Xuewen Hu, Yun Wang, Jinbo Ou Yang,Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu

期刊论文

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

期刊论文

Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: Effects of mixed solvents on pore structure and supercapacitive performance

Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan

期刊论文